Abstract:
O cancelamento de reservas tem um impacto substancial nas decisões de gestão da procura na industria hoteleira. Os cancelamentos limitam a produção de previsões precisas, uma ferramenta crítica em termos de desempenho de gestão da receita. Para limitar os problemas causados pelo cancelamento de reservas, os hotéis implementam políticas de cancelamento rígidas e estratégias de overbooking, as quais podem vir a ter influência negativa sobre a receita e reputação social.Usando conjuntos de dados de quatro hotéis de resort e abordando a previsão de cancelamento de reservas como um problema de classificação no âmbito da Data Science, os autores demonstram que é possível construir modelos para prever cancelamentos de reservas com resultados superiores a 90%. Estes resultados permitem demonstrar que apesar do que foi assumido por Morales e Wang (2010) é possível prever com alta precisão se uma reserva será cancelada.Os resultados permitem que os hoteleiros prevejam com melhor precisão a procura líquida e construam melhores previsões, melhorem as políticas de cancelamento, definam melhores táticas de overbooking e usem estratégias de alocação de inventário com preços mais assertivos.